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The stability of an unsteady Kelvin-Helmholtz flow 
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The investigation concerns the stability of an interface between two inviscid 
fluids of different densities which flow parallel to each other in an oscillatory 
manner. When the difference in the mean speeds is below the steady, critical 
speed for instability but is large compared to the amplitude of the fluctuations, 
parametric amplification of waves at the interface occurs, and the interface 
exhibits a resonance of a subharmonic nature. The paper concludes with a dis- 
cussion of the stability of unsteady shear layers on the basis of the results. 

1. Introduction 
There would seem to be at least two reasons why the stability of time- 

dependent flows is of interest. First, one may be interested in how external effects 
which cause the basic flow to be unsteady but still laminar affect the stability 
of that flow. Thus, Donnelly (1964) has found experimentally that circular 
Couette flow can be stabilized somewhat by having the velocity of the inner wall 
oscillate about a mean value, while Gilbrech & Combs (1962) have obtained a 
similar result for pulsating flow through pipes. Some time ago, however, Fage 
(1938) found that axial flow through concentric pipes could be destabilized by 
having the inner pipe perform axial oscillations. A recent analytical investiga- 
tion by Gershuni & Zhukhovitskii (1964) of the problem of convective instability 
of a fluid with a periodically varying temperature gradient indicates that the 
unsteadiness may have both stabilizing and destabilizing effects, depending 
upon the frequency and amplitude of modulation. 

A second reason for interest in such flows is that, prior to its final breakdown 
into turbulence, a flow may develop from its steady, laminar form through one 
or more stages of finite-amplitude oscillation. Non-linear analyses based upon 
perturbing the primary, steady flow have provided information on these states 
of oscillation, but not on the final breakdown into turbulence. Hence it would 
seem worth while to take the view that the instability has grown to such a degree 
that the basic flow must be taken to be time-dependent and to perform a linear 
stability analysis based upon a model of this unsteady flow. Such an approach 
has been used by Greenspan & Benney (1963), who investigated by numerical 
techniques the stability of the time-dependent shear layer which is observed 
prior to the occurrence of bursts of turbulence in boundary-layer flow. 

t Present address : Aerodynamics Division, National Physical Laboratory, Teddington, 
Middlesex. 
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The theory of parametric amplification, described, for instance, in the books 
by McLachlan (1947) and Stoker (1950), is important for the problem a t  hand 
and is associated with systems in which the parameters which define the natural 
frequencies when constant vary with time in a periodic manner. The behaviour 
of such systems is described by an equation of the Hill or Mathieu type. The 
stability diagram for the Mathieu equation 

a2Y 
--+[6+scos7] F = 0 
dr2 

is shown in figure 1, mid its characteristics lead us to expect, for instance, that an 
inverted pendulum can be stabilized by suitably oscillating it in the vertical 
direction, thus causing the effective gravitational force to vary periodically with 
time. More important to this paper is the fact that a normally stable pendulum 
can be made unstable by the vertical oscillations, especially if the frequency of 

FIGURE 1. Tho stability boundaries for the Mathieu equation 

vertical oscillation is exactly twice the frequency of the pendulum’s natural 
motion (which corresponds to 6 = $ in figure 1). Some feeling for this sub- 
harmonic response can be gained by imagining the pendulum to be pulledupwards 
whenever the mass travels towards the position of equilibrium, thus increasing 
the kinetic energy of the mass, and pushed downwards whenever the mass 
travels away from the position of equilibrium, thus allowing the incremental 
increase of kinetic energy to be reflected in an increased amplitude of swing. 
As is clear from figure 1, instabilities are possible whenever 6 = n2/4, n being any 
integer. However, dissipative effects tend to exert a strong influence on the 
cuspidal regions of instability for n > 1, and the subharmonic response is usually 
the only response to be observed experimentally. 
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Quite early in the development of fluid mechanics, Faraday (1831) noticed 
such a subharmonic response in the case of waves a t  an interface near a vibrating, 
elastic surface. More recently, Benjamin & Ursell (1954) applied the theory 
associated with the Mathieu equation to the problem of the generation of surface 
waves in a container which is partly filled with water and which oscillates 
vertically. They found excellent agreement between theory and experiment for 
the subharmonic response. Skalak & Yarymovych (1962) investigated the non- 
linear aspects of the development of the surface waves and found that further 
subharmonic responses become possible for sufficiently large amplitude oscilla- 
tions of the container. 

In  this paper, the somewhat analogous problem of two fluids of different 
densities in parallel, time-dependent motion is considered. The corresponding 
steady problem is the dassic one of Kelvin and Helmholtz. We show that the 
oscillations of the basic flow can cause a subharmonic resonance such that a wave 
which is neutrally stable in the absence of the oscillations and whose frequency is 
half of the frequency of the flow oscillations becomes unstable. 

2. The model 
We wish to consider the stability of a flow which is dependent upon time 

and which also satisfies the basic equations of motion. Consider the parallel 
flow of two fluids of different densities. Let x and y be co-ordinates in the plane 
of the interface, z the co-ordinate normal to the interface, u, v, w the corresponding 
velocity components, P the pressure, p the density, and g the gravitational ac- 
celeration. Let the velocities of the basic flow be Ui(t), where j = 1 or 2 refers, 
respectively, to the lower or upper fluid. For an irrotational flow, an integral 
of the equations of motion may be written as 

q p j  + $(u? + vi” + wi”) + gz + a#jjjat = I$@), 

where $.(t) is an arbitrary function of time and $j is a velocity potential. 
In  order to have a parallel basic flow, the interface must be plane, and the 

pressure must balance across it. By suitable choice of the $.(t), one can balance 
all terms except the terms involving the #j, which depend upon x as 

However, the difference in pressure can be set equal to zero if 
#j(x, t) = xzqt). ( 2 . 2 )  

which, for the statically stable case pJpl < 1, amounts to a balancing flow of 
smaller magnitude but in phase with the unsteady flow in the upper fluid. In  
reality, one would expect a modification of the flow in the lower fluid with a more 
complicated phase relationship due to viscous shearing action. 

We have also assumed, in order to isolate the effects of flow unsteadiness, 
that the basic flow is spatially constant except for the discontinuous jump in 
density and velocity at  the interface. For an anaIysis of the stability ofa  steady 
shear layer without stratification but with spatial variations, the reader is 
referred to a recent paper by Hocking (1964). 
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3. Stability analysis 
We now consider the flow to be perturbed by a disturbance of sufficiently 

small magnitude so that we may consider the linearized version of (2.1) for t.he 
disturbance pressure, Spi. 

where 7 is the displacement of the interface from z = 0. We assume that the 
disturbance may be expressed in terms of its normal modes in the (z, y) directions 
and so express any function f(z, y, x ,  t )  as 

f(z, Y, 2, t )  = .%, t )  exp {w%x + k,y)) .  (3.2) 

We take the fluid to  be of infinite depth. The appropriate solutions of the equa- 
tion of continuity are then 

S$l = Al(t)  eks,  Sg2 = A2(t) e--k3, (3.3) 

where k2 = k: + k:. The equation which relates the displacement of the interface 
to the normal component of velocity is 

Using this relationship, we may express the A,(t) in terms of q(t) as 

Aj( t )  = ( -  l)f+l@ 1 (di+ik,Tl,?j). aq 
(3.5) 

By use of (3.3) and (3.5), we may now write from (3.1) the jump in perturbation 
pressure across the interface as 

A jump in the perturbation surface pressure is allowed due to the effect of surface 
tension so that 

The final equation for ;ii(t) is then 

SF2 - SP1 = - k2T;ii. (3.7) 

a 2 q  
- + 2ik, (a1 Ul+ M; U )  - 
at2 - 2  at 

where P2 , a 2 = - .  a1 = ~ 

P1+ P2 P1 + P2 

P1 
(3.9) 
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It is convenient to eliminate the first derivative term by means of the sub- 
stitution 

(3.10) ?/(t)  = q ( t )  exp ( - i k z l  (al V, + a2 U2) dt) . 
The stability of 7(t) is governed by that of +j(t), and the equation for +(t) is then 

- 

a1a2@( u, - U2)2 q = 0. (3.11) 1 d2+j k3T 
- + [&(a1 -a2) +-- 
dtz P1+ P2 

When the velocities of the basic flow are constant, the interface becomes unstable 

(3.12) 
when 

k3T 
a1a2E3U1- U,)2 2 gl%(a.,-a,)+-----. 

P1+ P2 

The minimum value of 1 Ul - U21 for instability occurs when 

k, = k, k2 == S(P1-P2) /T 

and is given by the formula of Kelvin 

(3.13) 

The instability occurs because the pressure induced by the disturbance opposes 
the effects of gravity and surface tension and increases with the difference in 
velocities until the effective stiffness of the interface becomes nil. This effect 
is reflected in (3.11) by the change in the wave speed relative to the mean con- 
vective speed, the latter being expressed by the terms in the exponent of (3.10). 
From the preliminary remarks concerning parametric resonance, we suspect 
that a resonance might occur when the flow velocities vary periodically with 
time, and when, consequently, the wave speed is being modified continuously. 

In  accordance with the requirements concerning the basic flow, as discussed 
in $ 2 ,  we consider the case when 

U2(t) - L\(t) = AU,+ 1 - 2  Ocosot, (3.14) 

where Al& is the difference between the mean components and 0 is the amplitude 
of the unsteady component of flow in the upper fluid. Then the governing equa- 
tion (3.11) becomes 

( 3 

We first note that the mean effect of the oscillations is to augment the pressure, 
induced by the perturbation, which decreases the effective stiffness of the inter- 
face. Thus, in contrast to (3.12), the interface will have no effective stiffness when 

(3.16) 
lc3T 

a1a2k:[ (A?&)2 + f (1 - 2)2 02] B gk(a, - a2) + -. 
P1+ P 2  

Here we ignore the possibility that the system may be within one of the slender 
bands of stability which exist in figure 1 for 6 < 0. This result is due to the fact 
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that the time-averaged kinetic energy for the unsteady flow (3.14) is greater than 
for the case of constant velocities. Because values of 0 which are quite small in 
comparison with the mean velocity are mainly of interest, the modification of 
the classic result is not substantial in this respect. However, the situation is 
quite different when one considers the possibility of a subharmonic resonance. 

The equation (3.15) has the form of Hill's equation. It is convenient to 
approximate the equation in two ways, depending upon whether 

We consider first the former case, which would seem to have the most interest. 

The governing equation (3.15) is then approximated by the following equation: 

a1a2ki (AUo)2 
a2q ---+ [gk(a1-a2)+-- k3T 

a t 2  P1+ P2 

(3.17) 

which is of the Mathieu type. We note that the system is stable, as in the steady 
case, to perturbations transverse to the flow direction. Also, the oscillations have 
no effect when p1 = p2, in which case the oscillations are of the same amplitude 
and phase, and one can eliminate the explicit dependence on time from the 
beginning by simply defining a new variable of time. For this case, of course, the 
corresponding steady flow (for T = 0) is unstable for all wave-numbers. 

As mentioned earlier, the subharmonic response is the most important because 
viscous effects would tend to eliminate the higher harmonic responses. The 
higher harmonic responses shown in figure 1 are all of order c2. For Is/ < 1, 
the boundaries of the subharmonic region in figure 1 are defined approximately 

by Q = 1 4 - 2  + I€. (3.18) 

Contrasting (3.17) to (1. l), we may use (3.18) to write the approximate condition 
for instability in the present problem as 

k3T 

P1+ P2 
gk(a l -a2 )+- -a la2k~(AUo)2  

For values of 0 such that these boundaries are surpassed, one solution of (3.17) 
will grow exponentially with time. Clearly, for small 0, the instability is most 

ala2k: (AUo)2. 
w2 k3T 
- = gk(a,-a,)+-- 
4 P1+ P2 

likely when 
(3.20) 

Hence, given w and AUo, one can find a corresponding k to give the subharmonic 
response. Therefore the interface is always unstable under the present conditions. 
Assuming kz = k, one can show that w2 increases monotonically with k up to 

(3.21) 
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For values of (AUo)z greater than (3.21) but less than (3.13),  presumably three 
different values of k can satisfy (3.20) for given w and AUo. The growth rate would 
then determine which wave-number would be predominant. A schematic dia- 
gram of (w2/4)  as a function of k for various AUo is shown in figure 2. For values 

FIGURE 3. The relationship between frequency and wave-number for the 
subharmonic response. 

of below the value given in (3.21),  one can generally state that increasing 
w corresponds to increasing k and that a disturbance of fixed wavelength will 
be excited by lower values of w as AU, increases. The first of these statements is 
no longer valid when (AUo)2 is in excess of the value given in (3.21).  

It is known that, at 6 = 2, the solutions of the Mathieu equation (1 .1)  will 
behave as y ( t )  - yo exp { 2 et/2) for small 6.  Thus when the corresponding con- 
dition (3.20) in the present problem is fulfilled, the interface will behave as 
$ ( t )  N q0 exp { 5 qt), where 

q = AUoBa,a2 1 - 2  k$w-*. (3.22) 

and where w is defined by (3.20).  Hence, for constant w and AUo and kz = k, 
the growth rate is greater for disturbances with higher wave-numbers. Therefore, 
when is larger than the value given in (3.21) and three values of wave- 
number become possible for a given value of w ,  the shortest wavelength distur- 
bance will predominate. More generally, the growth rate per unit of time q 
increases monotonically with k up to the value of given in (3.21).  Then, it 
also develops a relative maximum, as shown schematically in figure 3. The growth 
rate becomes singular when (AUJ2 achieves the critical speed for Kelvin- 
Helmholtz instability because the perturbation technique which establishes the 
relation for the growth rate and which, with reference to ( l . l ) ,  requires that 
6 9 Ie/ is not valid as 6 --f 0 for non-zero E .  Finally, it is interesting to note that the 

( :J 
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growth rate per cycle of oscillation, i.e. q/w,  has a maximum for all AU, when 
k2 = g(p, - p2)/T, i.e., for the disturbance with the minimum phase velocity in the 
absence of any flow. 

These results are dependent upon the validity of the discontinuous profile 
model, however, and therefore are meaningful a t  most only for large wa,velength 
disturbances. 

<(3.13) 

< (3.2 1) 

FIauRE 3. The relationship between growth rate and wave-number 
for the subharmonic response. 

I n  order to understand the subharmonic resonance on a physical basis, it is 
perhaps helpful to move with the lower fluid and to consider the motion of a 
particle at the interface due to the influence of a neutrally stable wave. As 
the particle moves toward the equilibrium position, the in-phase restoring force 
will be greater than in the Kelvin-Helmholtz case if lU2- U,( < lAUol (see 3.11). 
On the other hand, if 1 U2 - U,l > lAU,I as the particle moves away from the 
equilibrium position, the restraining force will be relatively less, and the higher 
kinetic energy of the particle a t  the equilibrium position will result in an increased 
amplitude of departure away from this position. The mechanism is therefore 
quite similar to the motion of a pendulum due to a periodic vertical oscillation, 
which was discussed earlier. 

The approximate form of (3.15) is then 
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The stiffness of the interface will now only vanish when 

(3.24) 

which requires 0 to be in excess of the Kelvin-Helmholtz result for hi& (3.12). 
We also notice that the term explicitly dependent upon time has a frequency 

twice that of the imposed frequency. Hence the subharmonic response of (3.23) 
will actually be isochronous with respect to the flow oscillations. 

The general form of (3.23) can be represented by the equation 

~+,6’+E’+€’CoS2wt]y dt2 = 0, 

which may be placed in terms of (1.1) by defining 

6’ + 6’ 6’ 
7 = 2wt, p = 6, - = €. 

4 w 2  

(3.25) 

(3.26) 

FIGURE 4. The subharmonic region of instability for the equation 

dz+[B’+€‘+€‘ cos 2wt] y = 0. 
dt2 

If we assume that the stability of (3.25) can be decided in the same manner as 
the Mathieu equation, namely, by deciding how certain periodic solutions for 
e = 0 can be extended into the region 181 > 0, we may use (3.18) and (3.26) in 
in order to define the boundaries on the subharmonic region as 

6’ = W 2 - 1 E ’  2 , 6’ = w2-36’ .  z (3.27) 

The diagram is now asymmetrical with respect to the E’ = 0 axis and is shown in 
figure 4. For our problem, E‘ < 0 and we consider only the lower half of figure 4. 
In  contrast to the previous example, the most unstable condition no longer 
occurs for 6’ = 02, which is stable for I E ’ ~  > 0 to this order of approximation. In  
fact, due to the shape of the diagram, instability will occur only for 6’ > w2, 

k3T 
w2 < gk(CL1-CL2)+-. 

P1+ P 2  

thus requiring that 
(3.25) 
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Then 0 must fulfil a requirement with regard to its amplitude, namely, 

(3.29) 

In  the previous case, when Avo 9 o,, instability was found to occur for any 
non-zero value of 0 at the subharmonic condition. On this basis, the present case 
must be considered to be more stable. 

4. Discussion of the stability of unsteady shear layers 
The preceding section emphasized how an oscillating component of flow velo- 

city, whose magnitude is quite small in comparison with the mean flow velocity, 
can destabilize that flow through the mechanism of parametric amplification. A 
similar result has been obtained for the flutter of a membrane in an oscillatory 
flow. There the unsteadiness also tends to destabilize the mode of instability 
intrinsic to the dissipative nature of the membrane and which has been discussed 
by Landahl (1962) and Benjamin (1963). 

Not all flows, however, are as affected by the unsteadiness as are these models. 
For instance, the stability of the time-dependent, stratified shear flow 

I z > 0, u = uz(l+E.coswf) ,  p = p2, 

z < o ,  u=o, P = P1. 

has also been investigated for 181 < 1 by Kelly (1964), who showed that no sub- 
harmonic resonance would occur. One should realize, however, that the corre- 
sponding steady flow ( E .  = 0) has no instability a t  all. It is conjectured that 
unsteady effects are of most importance for those problems in which the corre- 
sponding steady flow is unstable for a certain range of parameters. Then in- 
stabilities might arise also outside this range for the unsteady problem if the 
disturbances in the steady problem have a non-zero wave velocity which is 
dependent upon wave-number outside this region. In  other words, the system 
must be dispersive. 

These last comments might be clarified by considering the behaviour of a 
discontinuous shear layer whose velocity varies linearly with height between 
two given values and whose thickness varies periodically with time. The 
numerical results of Greenspan & Benney (1963) indicate that neutrally stable 
disturbances, with wave-numbers in excess of the cut-off wave-number for the 
constant shear layer, can be excited in the unsteady case (see figure 2 of their 
paper). This result clearly indicates that the periodic contractions and expansions 
of the layer introduce a resonance of the Mathieu type. Analysis similar to that 
of the preceding sections reveals that one can relate the frequency of contraction 
to some wave-number, larger than the cut-off wave-number, through a sub- 
harmonic condition similar to that given in (3.20). This disturbance will undergo 
maximum amplification for a given frequency and for wave-numbers greater 
than the cut-off value, but waves close to it will also be amplified, depending 



The stability of an unsteady h7elvin-Helmholtz $ow 557 

upon the amplitude of oscillation (see 3.19). The growth rate of the instability 
decreases exponentially as the wave-number and frequency increase, so that 
very short wavelength disturbances are unlikely to be excited through this 
mechanism. 

However, these results are dependent upon the assumption that the dis- 
continuous profile yields physically meaningful results for wave-numbers in 
excess of the cut-off value. It is characteristic of the model that disturbances 
with wave-numbers in excess of the cut-off value are neutrally stable, and it is 
the interaction between these neutrally stable waves and the imposed unsteadi- 
ness which leads to parametric amplification. However, numerical calculations 
performed in connexion with the continuous profile U ( z )  = tanhz, which is the 
type of flow intended to be simulated by use of the discontinuous shear profile, 
indicate that the disturbances are damped monotonically for wave-numbers in 
excess of the cut-off value. This is certainly true for finite Reynolds numbers, as 
Betchov & Szewczyk (1963) have shown, and is presumably true for the inviscid 
case. This extrapolation would be in agreement with Lin’s (1955, chapter 8) 
interpretation of the correct inviscid limit for profiles with an inflexion point. 

This conclusion indicates that seriously misleading results may arise for the 
case of an unsteady shear layer of the type considered by Greenspan & Benney, 
at least for wave-numbers beyond the cut-off value, through the use of a disi 
continuous profile. The unsteadiness will certainly not interact with a mono- 
tonically decaying, or growing, wave to the same degree as with a neutrally 
stable wave. This point can be appreciated by reference to figure 1 or by considera- 
tion of the effects of vertical oscillation on the motion of a heavily damped pen- 
dulum. The same criticism can be made of the use of a discontinuous profile 
to represent any antisymmetric flow. In  the corresponding continuous case, 
Tatsumi & Gotoh (1960) have shown that the phase velocity does not vary 
with wave-number. Hence a co-ordinate system can be defined such that all 
disturbances with wave-numbers beyond the cut-off value will appear to be 
damped monotonically. By using a discontinuous profile, these disturbances 
would appear only to be neutrally stable. However, continuous profiles which 
are not antisymmetric may have a strong dependence of phase velocity on wave- 
number, as, for instance, in the case of a full jet profile. One might expect that 
unsteady effects could then cause disturbances with wave-numbers significantly 
beyond the cut-off value to become unstable. 

Unsteadiness would otherwise seem to  have importance only in possibly 
making a very limited range of wave-numbers near the cut-off value unstable 
and, as Greenspan & Benney show in their figure 5 ,  in causing a shift to a some- 
what higher value for the wave-number of the most unstable disturbance. 
This shift due to unsteady effects, however, is relatively small in comparison to 
the fundamental increase in wave-number due to the assumed formation of a 
very thin shear layer during the transition process. The very significant rise in 
wave-number and frequency due to the instability of this shear laver is, however, 
predictable on a quasi-steady basis. Hence it would seem that the unsteady 
nature of the shear layer is not of crucial importance to the results of Greenspan 
& Benney, as far as wave-number is concerned. 



558 R. E.  Kelly 

It is felt that the Kelvin-Helmholtz result remains valid, at least for long 
wavelength disturbances, in spite of the above objections. There the basic 
interaction is between the unsteadiness and a modified gravity wave which will 
damp out only in an oscillatory manner. Hence a first-order (6) interaction is 
possible, although viscosity will cause somewhat higher amplitude oscillations 
to be required for resonance, just as the experimental results of Benjamin & Ursell 
(1951) reveal for their problem. The Kelvin-Helmholtz analysis indicates the 
importance of the basic system being dispersive, because, with reference to 
equations (3.10) and (3.11)) it  is clear that the unsteadiness interacts only with 
that part of the wave velocity which is dependent upon wave-number. 

The above remarks must be regarded mainly as conjectures until an unsteady, 
continuous profile of the type suggested is investigated. It was, however, thought 
to be relevant to consider how unsteadiness affects the symmetric disturbance 
mode for a triangular jet, of thickness 2b(t), because this mode is neutrally stable 
for small values of wave-number as well as large. The discontinuous profile is 
more meaningful for the small wave-number rbgime, and one might expect the 
mode in the corresponding continuous case to exhibit a slightly damped, oscil- 
latory behaviour. It should, however, be remembered that the antisymmetric 
mode is unstable for small wave-numbers. We take as the basic flow 

1 
U(z , t )  = 0, 

Both the thickness and velocity of the jet are taken to vary with time, as was 
assumed in the shear profile investigated by Greenspan & Benney. The equation 
for the disturbance stream function 

&$ = $(z, t )  e i k z  (4.3) 

is ( $ t i k U )  (&-kz )$  = 0, 

because d2Uldz2 = 0. The solution is therefore of the form 

z 2 b(t) ,  3 = A(t)e-kz, 

o < z < t ( t ) ,  3 = B(t) eks+ C(t) e-ko, 

-b ( t )  < z < 0, 3 = D(t)ekfi+P(t)e-ka, 

z < - b ( t ) ,  $ = G(t)ekz .  

(4-4) 

(4.5) 

The symmetric mode of the disturbance velocity &(x, z ,  t )  is defined by taking 

A = - G ,  B = - P ,  C = -D .  (4.6) 

In  order that the normal component of velocity be continuous at z = b(t) ,  0, 
and - b( t ) ,  we must have 

(4.7) 
A = Bezkb + C,  

B + C =  0. 
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Matching of the perturbation pressures at the same points gives the following 
equation for B ( t )  

Here a new variable of time, 

r = 1 V ( t )  d t ,  (4.9) 

has been introduced in order to eliminate the explicit dependence of the problem 
upon V ( t ) .  The stability criterion remains the same as long as V ( t )  is of one sign. 
The solution of (4.8) is simply 

B = B,exp - i k  - ( 1 - e - - 2 k b ) d ~ - k ( b - b o )  ( 12:b  
(4.10) 

where the solution is written so that the disturbance has the phase velocity (cf. 
Rayleigh 1945, p. 395) 

C - ~ (1 - e-zkb), (4.11) 

when b( t )=  b,, a constant. By use of (4.10), (4.7), and (4.5), we may write the 
following expressions for $(z, t )  : 

1 
O - 2kb, 

0 < z < b( t ) ,  $(z, t )  = 2B, exp - ilc ~ (1 - ecZkb) d r -  k(b - 6,) 

(4.12) 
( 12:b  

Hence the effect of a variation of b( t )  is simply to give rise to an apparent amplifica- 
tion or damping of the wave, depending on whether z > or < b( t )  and b( t )  > or 
< b,. A contraction of the jet will make the waves in the region z < b( t )  appear 
to become unstable, although the amplification will cease as soon as a constant 
value is reached. Damping will occur for the waves in the region x > b( t ) .  For 
the periodic case, the waves would be alternately damped and amplified with the 
same period as the thickness variation. While the result is interesting from an 
observational point of view, it is clear that no resonance mechanism of the type 
discussed earlier in the paper is involved for this mode. 
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